Mountain Environmental Training Calendar
Please Note: Courses listed below with "register" buttons are open for public registration.

Sort Events By Time Zone:
All • Eastern • Central • Mountain • Pacific • Alaska • Hawaii

    • September 18, 2025
    • 8:00 AM
    • September 19, 2025
    • 5:00 PM
    • Live Online Training
    Register


    September 18 - 19, 2025, 8 A.M. to 5 P.M. MDT
     (2 Days)

    Mountain Time Zone

    (7 A.M. to 4 P.M. Pacific, 9 A.M. to 6 P.M. Central)
    Live Interactive Online Training



    Course Reviews (4.8/5): 


    Overview: This course provides a practical overview of contaminant behavior in soil and groundwater with an emphasis on petroleum, chlorinated solvents, and metals. The material is intended for consultants and regulators managing contaminated sites. Course content is constantly updated and includes new research, and approaches for characterizing contaminant distribution and hydrogeology in the subsurface.


    Course Topics:
    Transport and Fate Overview
    • Potential Fates of Contaminants

    • Advective Transport

    • Mechanical Dispersion

    • Chemical Dispersion

    • Matrix Storage
    • Back Diffusion
    • Effective Solubility and Raoult's Law
    • High Resolution Site Characterization

    3- and 4-Phase Equilibrium Partitioning

    • 3- and 4-Phase Mass Distribution

    • Le Chatelier's Principle 
    • Applications of Kd, Koc, foc, Kow, and KH

    • NAPL and the One Percent Rule

    • Metal Sorption and pH

    • Desorption Rates

    Subsurface Transport

    • Soil Properties

    • Contaminant Infiltration

    • Hydrogeology Overview

    • Three Point Problem

    • Retardation Factors

    • Contaminant Velocity

    • Diving Plumes

    • Permeability vs. Gradient

    Nonaqueous Phase Liquid (NAPL) Transport

    • LNAPL Transport and Distribution Scenarios
    • Saturation and Recoverability

    • Specific Retention (Sr)

    • Concentration of Saturation (Csat)

    • DNAPL Transport and Mass Distribution

    • 14-Compartment Model

    Vapor Transport

    • Henry's Law and Vapor Pressure
    • Contaminant Vapor Transport Processes

    • Petroleum Vapor Attenuation

    • Chlorinated Vapor Attenuation

    • Preferential Pathways

    • Barometric Pumping
    Natural Attenuation
    • Natural Attenuation Processes

    • Lines of Evidence

    • Decay Rates

    • Degradation Rate Tools

    • Estimating Restoration Time Frame

    Focus on Hydrocarbon Contamination

    • Gasoline and Diesel Chemistry

    • Properties of BTEX, Oxygenates, and Additives

    • Soil Retention

    • Ethanol Cosolvation and Plume Elongation

    • Natural Attenuation Processes

    • Geochemical Indicators
    • Plume Behavior and Redox Zones

    • BTEX Plume Lengths
    • Monitoring Parameters

    Focus on Chlorinated Hydrocarbon Contamination

    • Chlorinated Solvent Chemistry and Sources

    • Plume Behavior Classification

    • Degradation Pathways

    • Dehalogenating Microbes
    • Role of Hydrogen Gas
    • Geochemical Indicators
    • Biotransformation Rates
    • Zero-Valent Iron (ZVI)
    • Monitoring Parameters

    Focus on Metal Contaminants

    • Forms of Metal Contamination
    • Complexation and Speciation

    • Methylation and Demethylation

    • Redox and Microbial Effects

    • Cation/Anion Exchange

    • Sorption to Iron Oxides

    • Variably Charged Soils

    • Sulfide Precipitation

    • Dissolved Solids vs. Metal Mobility

    • Facilitated Transport

    • Metal Fixation and Aging

    • Scenarios Approach to Metal Attenuation


    Intended Audience: Environmental professionals seeking an improved understanding of petroleum, chlorinated solvent, and metal behavior in soil and groundwater. This course is ideal for seasoned professionals, as well as, new hires who would benefit from a "crash course" in modern transport and fate science.


    Education Level: Intermediate and advanced topics will be covered. A review of transport and fate principles will also be presented to ensure all levels benefit from attending.


    Course Materials: 2025 updated course proceedings and resources (246 color pages - PDF).


    Credit: 15 PDHs or 1.5 CEUs for completing 15 hours of instruction.


    Registration: $395, $295 per person for 2 to 9 people, $250 per person for 10 or more people on the same registration. Each registrant will receive their own link to join the training and may participate from any location with internet access. You may register online or by calling us at (800) 385-0783.


    Location: Anywhere you can get comfortable and online.

    About the Instructor: Erick McWayne has over thirty years of professional experience in environmental quality management and teaching related courses. As a consultant, he managed contaminated surface water, soil, and groundwater projects for the Department of Defense and other clients. He currently provides consulting support to environmental projects and teaches courses in contaminant chemistry, transport and fate, geochemistry, hydrogeology, and remediation with the University of California Davis and the National Environmental Management Academy (NEMA).

    • October 07, 2025
    • 8:00 AM
    • October 08, 2025
    • 5:00 PM
    • Live Online Training
    Register


    October 7 - 8, 2025, 8 A.M. to 5 P.M. MDT (2 Days)

    Mountain Time Zone
    (7 A.M. to 4 P.M. Pacific, 9 A.M. to 6 P.M. Central)

    Live Interactive Online Training



    Course Reviews (4.8/5): 


    This 2025 updated course provides a comprehensive overview of PFAS site management including the transport, fate, and remediation of per- and polyfluoroalkyl substances (PFAS) in soil, surface water, and groundwater. PFAS have been in use since the 1940s, are highly toxic, resist degradation, and are becoming increasingly regulated. This training begins with a review of PFAS sources, toxicity, and common forms detected in the environment including the ionized perfluoroalkyl acids (PFAA) such as perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS), PFAA precursors, and newer PFAS including perfluorobutanesulfonate (PFBS), fluorotelomer substances, F-53B, ADONA, and GenX related chemicals such as hexafluoropropylene oxide dimer acid (HFPO-DA). The course then focuses on more advanced topics including PFAS transport, fate, site characterization, analytical methods, and effective remediation strategies for soil, surface water, and groundwater. Federal drinking water standards and drinking water treatment technologies are also covered.


    Course Topics

    PFAS 101 - The Basics

      • What Are PFAS?

      • Precursors and Degradates

      • Acronyms and Naming Conventions

      • Production History and Usage Trends

      • Replacement Chemistry

      • Sources and Modes of Release

      • Aqueous Film-Forming Foam (AFFF)
      • Detections in the Environment
      • Toxicity and Health Effects


    Physical and Chemical Properties

      • Physical Properties of PFAS

      • Fluorine Characteristics
      • Carbon-Fluorine Bonds

      • Acidic, Anionic, and Cationic Forms

      • Acid Disassociation Constants

      • Thermal and Chemical Stabilities

      • Solubilities

      • Organic Carbon Partitioning

      • Vapor Pressures

      • Henry's Law Partitioning

      • Octanol-Water Partitioning

      • Bioconcentration Factors


    PFAS Transport and Fate in Air, Soil, Surface Water, and Groundwater

      • 4-Phase and Interface Partitioning
      • Advection, Dispersion, and Diffusion

      • Atmospheric Deposition

      • Leaching

      • Micelle Formation

      • Abiotic Transformation

      • Biotransformation

      • PFAS Degradates

      • Bioaccumulation

    Site Characterization for PFAS

      • Investigation Strategies

      • Source Identification

      • Sampling Approaches and Precautions

      • Selecting PFAS Analytes

      • Analytical Methods

      • Air, Soil, and Water Framework

      • Data Evaluation

      • Qualitative Analysis

      • Exposure Pathways & Risk Assessment

      • Conceptual Site Model Development


    Soil Remediation Technologies

      • Soil Washing

      • Excavation and Off-Site Destruction

      • Stabilization/Solidification
      • Thermal Desorption

      • Incineration


    Water Remediation Technologies

      • Reverse Osmosis

      • Nanofiltration

      • Granular Activated Carbon and Biochar
      • Modified Anion Exchange

      • Surface Active Foam Fractionation

      • Ozofractionation

      • Electrochemical Oxidation

      • Argon Plasma Treatment

      • Sonochemical Treatment

      • Alkaline Hydrothermal Liquefaction

     

    PFAS Regulation and Guidance

      • Federal Drinking Water Standards (MCLs)

      • National Regulatory Status
      • International Regulatory Approaches

      • Guidance and Resources


    Intended Audience: This course is intended for environmental professionals seeking an improved understanding of PFAS chemistry, transport, fate, site characterization, and remediation.


    Education Level: Introductory to advanced. General principles, current research, and advanced topics are presented to ensure all levels benefit from attending. Familiarity with general chemistry and transport and fate principles is recommended. 


    Course Materials: 2025 updated course proceedings and references (302 color pages - PDF).


    Credit: 15 PDHs or 1.5 CEUs for completing 15 hours of instruction.


    Registration: $395, $295 per person for groups of 2 - 9 people, $250 per person for large groups of 10 or more on the same registration. Each registrant will receive their own link to join the training and may participate from any location with internet access. You may register online or by calling us at (800) 385-0783.


    Location: Your home or office - anywhere you can get comfortable and online.

    About the Instructor:  Erick McWayne has over thirty years of professional experience in environmental quality management and teaching related courses. As a consultant, he managed contaminated surface water, soil, and groundwater projects for the Department of Defense and other clients. He currently provides consulting support to environmental projects and teaches courses in contaminant chemistry, transport and fate, geochemistry, hydrogeology, and remediation with the University of California Davis and the National Environmental Management Academy (NEMA).

Previous Environmental Training Courses

September 19, 2024 Principles of Contaminant Transport and Fate in Soil and Groundwater Training Course: A Focus on the Behavior of Petroleum, Chlorinated Solvents, and Metals - Live Online Training
March 26, 2024 PFAS Transport, Fate, and Remediation in Soil, Surface Water, and Groundwater: Understanding and Managing Per- and Polyfluoroalkyl Substances Including PFOA and PFOS Course - Live Online Training
June 16, 2022 PFAS Transport, Fate, and Remediation in Soil, Surface Water, and Groundwater: Understanding and Managing Per- and Polyfluoroalkyl Substances Including PFOA and PFOS Course for Montana DEQ Staff - Live Online Training
April 26, 2022 Stormwater Pollutant Chemistry & Monitoring Short Course for Colorado DPHE Staff - Live Online Training
November 14, 2017 Remediation Principles and Technologies for Soil, Vapor, and Groundwater: Applications and Limitations of Sixty-four In Situ and Ex Situ Remedies - Denver, CO
June 07, 2017 Metal Attenuation in Soil and Groundwater: Applying the Six Scenarios Approach to Inorganic Contaminated Sites (U.S. DOE 2011) Training Course - Helena, MT
June 06, 2017 Chemistry Refresher for Environmental Professionals - Helena, MT
January 25, 2017 Principles of Contaminant Transport and Fate in Soil and Groundwater Training: A Focus on Petroleum, Chlorinated Solvents, and Metals - Denver, CO
January 24, 2017 Stormwater Pollutant Chemistry Short Course: Principles and Applications to Storm Water Treatment and Management - Southeast Metro Stormwater Authority, Centennial, CO
May 04, 2016 Stormwater Pollutant Chemistry Principles and Applications - Urban Drainage and Flood Control District, Denver, CO
May 03, 2016 Metal Attenuation in Soil and Groundwater: Applying the Six Scenarios Approach to Inorganic Contaminated Sites (U.S. DOE 2011) Training Course - Denver, CO
November 17, 2015 Stormwater Pollutant Chemistry: Applications to Monitoring and BMP Effectiveness Training Course - Fort Collins, CO
January 28, 2014 Stormwater Chemistry: Principles and Applications to Storm Water Treatment and Management, Denver, Colorado, January 28 - 29, 2014

© NEMA - Environmental Training
Environmental Training Calendar
support@nemallc.com

(800) 385-0783

Powered by Wild Apricot Membership Software